3.287 \(\int \frac{1}{x (a+b x)^2 (c+d x)^2} \, dx\)

Optimal. Leaf size=123 \[ -\frac{b^2 (b c-3 a d) \log (a+b x)}{a^2 (b c-a d)^3}+\frac{\log (x)}{a^2 c^2}+\frac{b^2}{a (a+b x) (b c-a d)^2}-\frac{d^2 (3 b c-a d) \log (c+d x)}{c^2 (b c-a d)^3}+\frac{d^2}{c (c+d x) (b c-a d)^2} \]

[Out]

b^2/(a*(b*c - a*d)^2*(a + b*x)) + d^2/(c*(b*c - a*d)^2*(c + d*x)) + Log[x]/(a^2*c^2) - (b^2*(b*c - 3*a*d)*Log[
a + b*x])/(a^2*(b*c - a*d)^3) - (d^2*(3*b*c - a*d)*Log[c + d*x])/(c^2*(b*c - a*d)^3)

________________________________________________________________________________________

Rubi [A]  time = 0.116541, antiderivative size = 123, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.056, Rules used = {88} \[ -\frac{b^2 (b c-3 a d) \log (a+b x)}{a^2 (b c-a d)^3}+\frac{\log (x)}{a^2 c^2}+\frac{b^2}{a (a+b x) (b c-a d)^2}-\frac{d^2 (3 b c-a d) \log (c+d x)}{c^2 (b c-a d)^3}+\frac{d^2}{c (c+d x) (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b*x)^2*(c + d*x)^2),x]

[Out]

b^2/(a*(b*c - a*d)^2*(a + b*x)) + d^2/(c*(b*c - a*d)^2*(c + d*x)) + Log[x]/(a^2*c^2) - (b^2*(b*c - 3*a*d)*Log[
a + b*x])/(a^2*(b*c - a*d)^3) - (d^2*(3*b*c - a*d)*Log[c + d*x])/(c^2*(b*c - a*d)^3)

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rubi steps

\begin{align*} \int \frac{1}{x (a+b x)^2 (c+d x)^2} \, dx &=\int \left (\frac{1}{a^2 c^2 x}-\frac{b^3}{a (-b c+a d)^2 (a+b x)^2}-\frac{b^3 (-b c+3 a d)}{a^2 (-b c+a d)^3 (a+b x)}-\frac{d^3}{c (b c-a d)^2 (c+d x)^2}-\frac{d^3 (3 b c-a d)}{c^2 (b c-a d)^3 (c+d x)}\right ) \, dx\\ &=\frac{b^2}{a (b c-a d)^2 (a+b x)}+\frac{d^2}{c (b c-a d)^2 (c+d x)}+\frac{\log (x)}{a^2 c^2}-\frac{b^2 (b c-3 a d) \log (a+b x)}{a^2 (b c-a d)^3}-\frac{d^2 (3 b c-a d) \log (c+d x)}{c^2 (b c-a d)^3}\\ \end{align*}

Mathematica [A]  time = 0.199673, size = 120, normalized size = 0.98 \[ \frac{b^2 (b c-3 a d) \log (a+b x)}{a^2 (a d-b c)^3}+\frac{\log (x)}{a^2 c^2}+\frac{b^2}{a (a+b x) (b c-a d)^2}+\frac{d^2 (a d-3 b c) \log (c+d x)}{c^2 (b c-a d)^3}+\frac{d^2}{c (c+d x) (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b*x)^2*(c + d*x)^2),x]

[Out]

b^2/(a*(b*c - a*d)^2*(a + b*x)) + d^2/(c*(b*c - a*d)^2*(c + d*x)) + Log[x]/(a^2*c^2) + (b^2*(b*c - 3*a*d)*Log[
a + b*x])/(a^2*(-(b*c) + a*d)^3) + (d^2*(-3*b*c + a*d)*Log[c + d*x])/(c^2*(b*c - a*d)^3)

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 158, normalized size = 1.3 \begin{align*}{\frac{{d}^{2}}{c \left ( ad-bc \right ) ^{2} \left ( dx+c \right ) }}-{\frac{{d}^{3}\ln \left ( dx+c \right ) a}{{c}^{2} \left ( ad-bc \right ) ^{3}}}+3\,{\frac{{d}^{2}\ln \left ( dx+c \right ) b}{c \left ( ad-bc \right ) ^{3}}}+{\frac{\ln \left ( x \right ) }{{a}^{2}{c}^{2}}}+{\frac{{b}^{2}}{ \left ( ad-bc \right ) ^{2}a \left ( bx+a \right ) }}-3\,{\frac{{b}^{2}\ln \left ( bx+a \right ) d}{ \left ( ad-bc \right ) ^{3}a}}+{\frac{{b}^{3}\ln \left ( bx+a \right ) c}{ \left ( ad-bc \right ) ^{3}{a}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x+a)^2/(d*x+c)^2,x)

[Out]

d^2/c/(a*d-b*c)^2/(d*x+c)-d^3/c^2/(a*d-b*c)^3*ln(d*x+c)*a+3*d^2/c/(a*d-b*c)^3*ln(d*x+c)*b+ln(x)/a^2/c^2+b^2/(a
*d-b*c)^2/a/(b*x+a)-3*b^2/(a*d-b*c)^3/a*ln(b*x+a)*d+b^3/(a*d-b*c)^3/a^2*ln(b*x+a)*c

________________________________________________________________________________________

Maxima [B]  time = 1.19191, size = 382, normalized size = 3.11 \begin{align*} -\frac{{\left (b^{3} c - 3 \, a b^{2} d\right )} \log \left (b x + a\right )}{a^{2} b^{3} c^{3} - 3 \, a^{3} b^{2} c^{2} d + 3 \, a^{4} b c d^{2} - a^{5} d^{3}} - \frac{{\left (3 \, b c d^{2} - a d^{3}\right )} \log \left (d x + c\right )}{b^{3} c^{5} - 3 \, a b^{2} c^{4} d + 3 \, a^{2} b c^{3} d^{2} - a^{3} c^{2} d^{3}} + \frac{b^{2} c^{2} + a^{2} d^{2} +{\left (b^{2} c d + a b d^{2}\right )} x}{a^{2} b^{2} c^{4} - 2 \, a^{3} b c^{3} d + a^{4} c^{2} d^{2} +{\left (a b^{3} c^{3} d - 2 \, a^{2} b^{2} c^{2} d^{2} + a^{3} b c d^{3}\right )} x^{2} +{\left (a b^{3} c^{4} - a^{2} b^{2} c^{3} d - a^{3} b c^{2} d^{2} + a^{4} c d^{3}\right )} x} + \frac{\log \left (x\right )}{a^{2} c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x+a)^2/(d*x+c)^2,x, algorithm="maxima")

[Out]

-(b^3*c - 3*a*b^2*d)*log(b*x + a)/(a^2*b^3*c^3 - 3*a^3*b^2*c^2*d + 3*a^4*b*c*d^2 - a^5*d^3) - (3*b*c*d^2 - a*d
^3)*log(d*x + c)/(b^3*c^5 - 3*a*b^2*c^4*d + 3*a^2*b*c^3*d^2 - a^3*c^2*d^3) + (b^2*c^2 + a^2*d^2 + (b^2*c*d + a
*b*d^2)*x)/(a^2*b^2*c^4 - 2*a^3*b*c^3*d + a^4*c^2*d^2 + (a*b^3*c^3*d - 2*a^2*b^2*c^2*d^2 + a^3*b*c*d^3)*x^2 +
(a*b^3*c^4 - a^2*b^2*c^3*d - a^3*b*c^2*d^2 + a^4*c*d^3)*x) + log(x)/(a^2*c^2)

________________________________________________________________________________________

Fricas [B]  time = 46.4656, size = 1015, normalized size = 8.25 \begin{align*} \frac{a b^{3} c^{4} - a^{2} b^{2} c^{3} d + a^{3} b c^{2} d^{2} - a^{4} c d^{3} +{\left (a b^{3} c^{3} d - a^{3} b c d^{3}\right )} x -{\left (a b^{3} c^{4} - 3 \, a^{2} b^{2} c^{3} d +{\left (b^{4} c^{3} d - 3 \, a b^{3} c^{2} d^{2}\right )} x^{2} +{\left (b^{4} c^{4} - 2 \, a b^{3} c^{3} d - 3 \, a^{2} b^{2} c^{2} d^{2}\right )} x\right )} \log \left (b x + a\right ) -{\left (3 \, a^{3} b c^{2} d^{2} - a^{4} c d^{3} +{\left (3 \, a^{2} b^{2} c d^{3} - a^{3} b d^{4}\right )} x^{2} +{\left (3 \, a^{2} b^{2} c^{2} d^{2} + 2 \, a^{3} b c d^{3} - a^{4} d^{4}\right )} x\right )} \log \left (d x + c\right ) +{\left (a b^{3} c^{4} - 3 \, a^{2} b^{2} c^{3} d + 3 \, a^{3} b c^{2} d^{2} - a^{4} c d^{3} +{\left (b^{4} c^{3} d - 3 \, a b^{3} c^{2} d^{2} + 3 \, a^{2} b^{2} c d^{3} - a^{3} b d^{4}\right )} x^{2} +{\left (b^{4} c^{4} - 2 \, a b^{3} c^{3} d + 2 \, a^{3} b c d^{3} - a^{4} d^{4}\right )} x\right )} \log \left (x\right )}{a^{3} b^{3} c^{6} - 3 \, a^{4} b^{2} c^{5} d + 3 \, a^{5} b c^{4} d^{2} - a^{6} c^{3} d^{3} +{\left (a^{2} b^{4} c^{5} d - 3 \, a^{3} b^{3} c^{4} d^{2} + 3 \, a^{4} b^{2} c^{3} d^{3} - a^{5} b c^{2} d^{4}\right )} x^{2} +{\left (a^{2} b^{4} c^{6} - 2 \, a^{3} b^{3} c^{5} d + 2 \, a^{5} b c^{3} d^{3} - a^{6} c^{2} d^{4}\right )} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x+a)^2/(d*x+c)^2,x, algorithm="fricas")

[Out]

(a*b^3*c^4 - a^2*b^2*c^3*d + a^3*b*c^2*d^2 - a^4*c*d^3 + (a*b^3*c^3*d - a^3*b*c*d^3)*x - (a*b^3*c^4 - 3*a^2*b^
2*c^3*d + (b^4*c^3*d - 3*a*b^3*c^2*d^2)*x^2 + (b^4*c^4 - 2*a*b^3*c^3*d - 3*a^2*b^2*c^2*d^2)*x)*log(b*x + a) -
(3*a^3*b*c^2*d^2 - a^4*c*d^3 + (3*a^2*b^2*c*d^3 - a^3*b*d^4)*x^2 + (3*a^2*b^2*c^2*d^2 + 2*a^3*b*c*d^3 - a^4*d^
4)*x)*log(d*x + c) + (a*b^3*c^4 - 3*a^2*b^2*c^3*d + 3*a^3*b*c^2*d^2 - a^4*c*d^3 + (b^4*c^3*d - 3*a*b^3*c^2*d^2
 + 3*a^2*b^2*c*d^3 - a^3*b*d^4)*x^2 + (b^4*c^4 - 2*a*b^3*c^3*d + 2*a^3*b*c*d^3 - a^4*d^4)*x)*log(x))/(a^3*b^3*
c^6 - 3*a^4*b^2*c^5*d + 3*a^5*b*c^4*d^2 - a^6*c^3*d^3 + (a^2*b^4*c^5*d - 3*a^3*b^3*c^4*d^2 + 3*a^4*b^2*c^3*d^3
 - a^5*b*c^2*d^4)*x^2 + (a^2*b^4*c^6 - 2*a^3*b^3*c^5*d + 2*a^5*b*c^3*d^3 - a^6*c^2*d^4)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x+a)**2/(d*x+c)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.21169, size = 269, normalized size = 2.19 \begin{align*}{\left (\frac{b^{4}}{{\left (a b^{5} c^{2} - 2 \, a^{2} b^{4} c d + a^{3} b^{3} d^{2}\right )}{\left (b x + a\right )}} - \frac{{\left (3 \, b c d^{2} - a d^{3}\right )} \log \left ({\left | \frac{b c}{b x + a} - \frac{a d}{b x + a} + d \right |}\right )}{b^{4} c^{5} - 3 \, a b^{3} c^{4} d + 3 \, a^{2} b^{2} c^{3} d^{2} - a^{3} b c^{2} d^{3}} - \frac{d^{3}}{{\left (b c - a d\right )}^{3}{\left (\frac{b c}{b x + a} - \frac{a d}{b x + a} + d\right )} c} + \frac{\log \left ({\left | -\frac{a}{b x + a} + 1 \right |}\right )}{a^{2} b c^{2}}\right )} b \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x+a)^2/(d*x+c)^2,x, algorithm="giac")

[Out]

(b^4/((a*b^5*c^2 - 2*a^2*b^4*c*d + a^3*b^3*d^2)*(b*x + a)) - (3*b*c*d^2 - a*d^3)*log(abs(b*c/(b*x + a) - a*d/(
b*x + a) + d))/(b^4*c^5 - 3*a*b^3*c^4*d + 3*a^2*b^2*c^3*d^2 - a^3*b*c^2*d^3) - d^3/((b*c - a*d)^3*(b*c/(b*x +
a) - a*d/(b*x + a) + d)*c) + log(abs(-a/(b*x + a) + 1))/(a^2*b*c^2))*b